
cloudsway.com

Using Linux Traffic 
Control to simulate 
latency and 
investigate fetch size 
for Oracle Database 
November 9, 2023 

Split-stack architectures are as prominent as ever. Consumers are utilizing 
multicloud and wide-area network (WAN) deployments to get best-in-class 
services at each level, stay cloud-agnostic, cut costs, and protect against 
disaster. While many networking advances have made such setups a reality, 
latency can still be introduced in multiple ways. 


Latency can be especially harmful between an application and a database. 
Luckily, with the Oracle database, there are multiple ways to tune network 
parameters to optimize performance over a high-latency connection. My 
colleagues Emiel Ramakers and Julien Silverston recently wrote a blog 
discussing fetch size tuning for Oracle Database Service for Azure. In this 
blog, we explore the impact of latency and fetch size in a simulated network 
latency environment for a data warehouse and online transaction processing 
(OLTP) workload.


1

https://blogs.oracle.com/cloud-infrastructure/post/fetch-size-optimize-large-query-oracledb-azure
http://cloudsway.com


cloudsway.com

What is fetch size? 
Fetch size is the number of rows retrieved per network call. By default, most 
Java Database Connectivity (JDBC) drivers use a fetch size of 10. If you’re 
reading 1,000 objects, 100 network calls are required to get the data. 
Increasing the fetch size to 250 results in only 4 network calls. In low-latency 
networks, this difference is negligible, but it’s trivial to see the impact this 
scale can have in a high-latency network.


Why don’t you want to make the fetch size as large as possible? As you 
increase fetch size, the client application uses more memory to store all the 
rows returned in one fetch. Fetch size isn’t one size fits all, but something to 
be tuned and tested before deployment


Linux Traffic Control 
One way to introduce network latency is the Linux Traffic Control 
(TC) command. The TC command helps in policing, classifying, shaping, and 
scheduling network traffic. We can use it to add a delay with every network 
packet. Let’s see it in action.


 
Figure 1: Normal ping


With no network delay, the average time it takes to ping the database is about 
0.2 ms. Let’s add a 5-ms delay using TC.


2

https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://cloudsway.com


cloudsway.com

 
Figure 2: Ping with 5-ms delay


Figure 2 shows an average time of 5.2 ms, as expected.


Testing 
Let’s run two tests for the following information:


• 	 Monitor the impact of varying latency and fetch size for data warehouse 
and OLTP workloads


• 	 Determine if Linux TC is a good representation of real latency


For the workload, I use a simple Python tool from our real-world performance 
team that generates data on the fly and measures the network latency between 
the client and Oracle database. This tool has both data warehouse and OLTP 
modes, which essentially determines how analytical/intense the SQL is, and 
easily allows me to vary fetch size.


Test 1: Varying latency and fetch size 
Setup 
The setup is simple with the client and database being in the same Oracle 
Cloud Infrastructure (OCI) subnet and availability domain, which a latency of .2 
ms. I add 5, 10, and 15 ms of latency using TC and vary the fetch size to 20, 
100, 250, and 500 for each.


3

http://cloudsway.com


cloudsway.com

 
Figure 3: Test 1 setup


Analyzing client time


 
Figure 4: Client time versus latency plot


4

http://cloudsway.com


cloudsway.com

 
Figure 5: Client time versus fetch size plot


These plots analyze the total time it takes to run the test queries as seen by 
the client. The time spent on the client increases almost linearly for both data 
warehouse and OLTP workloads as latency increases. Fetch size has a large 
impact for the data warehouse workload, but almost no impact on the OLTP 
workload. Increasing fetch size decreases client time, but seemingly only to a 
certain limit. In Figure 5, the client time begins to flatten out around a fetch 
size of 250.


Analyzing network time 

 
Figure 6: Network time versus latency plot


 
Figure 7: Network time versus fetch size plot


5

http://cloudsway.com


cloudsway.com

These plots analyze the total time spent in the network for the duration of the 
test and look very similar to the client time plots. This result suggests that 
network time is the driving factor of our test. Let’s see if we can confirm this 
hypothesis by looking at the percentage of overall time spent in the network.


Analyzing percent of time spent in the network 

 
Figure 8: Percentage of network time versus latency plot


 
Figure 9: Percentage of network time versus fetch size plot


Percent of network time is calculated as network time divided by client time. It 
increases with increased latency. Without tuning fetch size, network time takes 
up a large percentage of the total time for the data warehouse workload. 
However, a properly tuned fetch size significantly improves this ratio.


SQL processing time 
You might be alarmed by how large the network time percentage is. While the 
network does have a significant impact, it’s also important to understand this 
ratio fully. Client time is equal to time in the network + time in the database. 
So, we can rewrite our ratio as the following equation:


% Network time = network time⁄(network time + database time)


6

http://cloudsway.com


cloudsway.com

We’re really measuring the network time compared to the database time. So, if 
our database time is small, this ratio increases. Each of our SQL runs took the 
following times:


• 	 Average s/SQL for DWH: 0.18582


• 	 Average s/SQL for OLTP: 0.00026


These lengths are both quick, with OLTP being extremely quick. For real-world 
workloads, especially data warehouse queries with longer SQL processes, this 
ratio decreases. Understanding which bottleneck, the network or the database, 
your application is running into is important!


Test 2: Linux TC versus real-world latency 
Setup 
For real-world latency, the client and database are in different regions with an 
average latency of 76.2 ms. The simulated latency has the client and database 
in the same region and availability domain, and we use the TC command to 
simulate 76.2 ms of latency.


 
Figure 10: Test 2 setup


7

http://cloudsway.com


cloudsway.com

Results 

 
Figure 11: Test 2 results


Analysis 
The results using Linux TC and real latency are almost identical for both 
workload types. We can safely conclude that Linux TC is an effective 
simulation for real-world latency for both data warehouse and OLTP 
workloads, making it a valuable tool for testing the impact of latency on 
workloads. Once again, we gets the benefits of fetch size for the data 
warehouse workload and negligible effect for OLTP.


Conclusion 
Split-stack and WAN architectures have many advantages, but can also 
introduce latency as resources are deployed further from each other. Testing, 
tuning, and optimizing network parameters is paramount in such a setup. One 
such parameter to investigate is fetch size, which is the number of rows 
retrieved per network call. In this blog, we used Linux Traffic Control (TC) to 
simulate network latency and varied fetch size for a data warehouse and OLTP 
workload. We saw how significant an impact latency can have on an 
application, found fetch size has a profound influence on data warehouse but 
not OLTP type workloads, and that there is a limit after which increasing fetch 
size has a diminishing return on client time. We also confirmed Linux TC is a 
sufficient representation of real-world latency for both data warehouse and 
OLTP-workloads.


Every application and architecture are different. This means parameter values 
are not universal, but rather unique to a deployment. We focused on fetch size 
in this blog, but this is only one parameter that needs to be analyzed. I 
encourage you to leverage the Linux TC command to simulate latency and fully 
tune your application!


For more information, see the following resources:


8

http://cloudsway.com


cloudsway.com

• 	 Tune fetch size to optimize large query performance in Oracle Database 
Service for Azure


• 	 Improved Performance of Workloads with Oracle Database


About Cloudsway 
Cloudsway is a subsidiary of Wangsu Science and Technology (stock code: 
300017), established in March 2023. Wangsu Science and Technology is a 
global leading provider of information infrastructure platform services, with 
business spread across more than 70 countries and regions worldwide.


Cloudsway is one of the three innovation engines in Wangsu's “2+3” strategy, 
providing enterprises with integrated products and solutions, such as cloud 
strategy consulting, modernized application construction, generative AI, and 
enterprise-grade cloud hosting services. solutions based on AWS.

Cloudsway is committed to become a leading provider of hybrid cloud 
solutions,offering secure, efficient, and convenient cloud services to 
enterprises, helping them with digital and intelligent transformation, and 
boosting their operational efficiency.

9

https://blogs.oracle.com/cloud-infrastructure/post/fetch-size-optimize-large-query-oracledb-azure
https://blogs.oracle.com/cloud-infrastructure/post/fetch-size-optimize-large-query-oracledb-azure
https://blogs.oracle.com/cloud-infrastructure/post/fetch-size-optimize-large-query-oracledb-azure
https://www.oracle.com/webfolder/technetwork/tutorials/jdedwards/White%20Papers/DBFetch_TechBrief.pdf
http://cloudsway.com

	What is fetch size?
	Linux Traffic Control
	Testing
	Conclusion
	About Cloudsway

